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Abstract

The purpose of this paper is to introduce a hybrid
cognitive-reactive system, which integrates a machine-
learning algorithm (SAMUEL, an evolutionary
algorithm-based rule-learning system) with a
computational cognitive model (written in ACT-R). In
this system, the learning algorithm handles reactive
aspects of the task and provides an adaptation
mechanism, while the cognitive model handles
cognitive aspects of the task and ensures the realism of
the behavior.  In this study, the controller architecture
is used to implement a controller for a team of micro-
air vehicles performing reconnaissance and
surveillance.

1. Introduction

This research focuses on the design and
implementation of intelligent autonomous agents, or
teams of agents, which can be easily integrated into
mixed-initiative human-agent teams. Successful
integration is supported by use of common
representation between human and artificial team
members, and cognitively plausible agent behaviors.
The adaptation of behaviors to changes in the
environment and the capabilities of the team has to be
permitted as well. This study addresses some of these
issues by creating an architecture that supports
cognitively plausible behaviors of a team of intelligent
unmanned vehicles.

The purpose of this research is to merge a cognitive
model and a reactive system into a hybrid control
architecture for autonomous agents.  In this study,
SAMUEL, an evolutionary algorithm-based reactive
rule-learning system [13], is integrated with a cognitive
model written in ACT-R, a computational cognitive
architecture [5].  In this hybrid system, the learning
algorithm handles reactive aspects of the task such as
local navigation and obstacle avoidance, and provides
an adaptation mechanism.  The cognitive model
handles higher-level aspects of the task such as

planning and cognition, and ensures the cognitive
realism of the behavior.

For this study, the hybrid architecture was adapted to
provide a controller for a group of micro air vehicles
whose task was reconnaissance and surveillance.  The
following sections of the paper discuss related work in
cognitive science and robotics, and describe the hybrid
architecture.  The description of the task domain and
the experimental approach along with current results
are provided as well.

2. Related Work

In early robotics work, the architectures tended to be
hierarchical, stressing the classical sense-think-act
cycle.  One example of this approach is the earlier
work of Albus on reference model architecture for real-
time intelligent control systems (ARTICS) [1].  Later,
behavior-based approaches stressed rapid reaction to
the environment and tried to model the sense-react
cycle of insects and animals.  This work is best
exemplified in the subsumption architecture [8] where
all behaviors have direct access to sensors, and each
can produce direct actions in the world.

Many researchers saw the need to incorporate both
approaches into their architectures.  The current
popular approach adapts something similar to a multi-
level architecture with reactive behaviors or skills at
the lower levels, and more traditional planning systems
at the upper layer.  Between these are additional
mechanisms, which attempt to bridge the two
approaches.  This middle layer typically involves
sequencing of skills based on goals produced by the
planner. The 3T architecture [7], for example, uses
reactive action plans (RAPs) [12] to instantiate the
preconditions, skills, and stopping criteria to achieve
the planner's goals.  Albus's more recent work has
extended the real-time control system (RCS) to
incorporate different levels of reactivity into his
architecture, moving it from a hierarchical to a
heterarchical architecture [2], [3].



Our low-level controller, SAMUEL, implements the
behaviors or skills, which it learns as stimulus-response
rules [13].  This representation is derived from
behaviorist tradition as mentioned above.  SAMUEL's
strength lies in its ability to learn relatively simple
condition-action rules to solve complex tasks.
SAMUEL and other evolutionary algorithm-based
reinforcement learning systems [15] are good at
learning reactive strategies for sequential decision
problems, but cannot take advantage of the higher-level
information that facilitates cognition.

Computational cognitive modeling is primarily
concerned with building running models that not only
imitate what a person does but also how they do it.
There are several modeling languages prevalent in the
literature today:  ACT-R [5], Soar [16] and EPIC [14].
Each of these modeling languages has a different
emphasis and, thus, different strengths and weaknesses
[11].  Our work will focus on ACT-R. ACT-R is a
production system language that allows creation of
models based on human cognition.  ACT-R has an
excellent track record of providing fits to human data
in a wide variety of domains including memory for
goals [4], human computer interaction [6], and
scientific discovery [20].  Most current work in ACT-R
has focused on high-level cognition and much less
work has been done on reactive skill modeling and
learning [17].

Our hypothesis is that an integration of SAMUEL with
ACT-R will create a robust control architecture that
combines the best of both reactivity and high-level
cognition (e.g. planning), with learning at both the
reactive level and at the cognitive level.

3. Hybrid Architecture

To facilitate the implementation of the cognitive layer
of the controller, ACT-R, a computational cognitive
modeling system, was used. SAMUEL, an
evolutionary algorithm-based rule learning system, was
used for implementation of the reactive layer of the
controller.  The two layers of the controller
communicated with each other using Unix Inter-
Process Communication protocols (shared memory and
message queues).  This design allowed for independent
decision cycles for low- and high-level behaviors as
well as distributed implementation.

3.1 Cognitive Layer of the Controller

A cognitive model implemented using ACT-R
augmented the cognitive layer of the controller.
ACT-R is a production-system architecture based on
condition-action rules, which execute the specified
actions when the specified conditions are met.  ACT-R

was chosen for this research because it provides a
rigorous framework for cognitive modeling as well as a
set of built-in parameters and constraints on cognition
to facilitate a priori predictions about behaviors and
more psychologically plausible models [5].

Building a cognitive model, which is to serve as an
agent’s controller, consists of implementing the
declarative and procedural knowledge of the domain
and the task.  The declarative knowledge is
implemented using structures called chunks, which
contain information about the current perceived state of
the world as well as facts related to the domain.
Examples of declarative knowledge include “There is
an object in front of agent number 5”,  “The object in
front of agent number 5 is green”, and “Tanks are
green.”  The procedural knowledge is implemented as
sets of productions where each production is a
condition-action pair.  The condition specifies what
must be known for the production to apply and the
action specifies the things to do if the production
applies.  The conditions test the knowledge contained
in declarative memory, while the actions modify the
declarative memory or perform physical actions.
Examples of procedural knowledge (production rules)
include “IF the goal is to find objects THEN send an
agent to search for objects”, “IF the goal is to search
for objects and object has been found THEN determine
the type of an object”, and “IF the goal is to determine
the type of an object and the color of the object is
green THEN the object is a tank.” Given this set of
productions and chunks from the previous example, the
model would be able to deduce that a tank has been
found.

ACT-R implements a fixed-attention architecture,
which means that at any point in time, it is focused on
a single goal and only one production can fire during
each cycle.  The actions of productions can create new
goals as well as change the focus, which allows the
system to support multiple tasks in a single model.
ACT-R models much of the qualitative structure of
human cognition at a subsymbolic level (also referred
to as “rational” level) rather than using the symbolic
structures described above. The subsymbolic level
contains quantities that participate in neural-like
processes, which determine the chunk and production
access in memory.  It also has a set of learning
processes that can modify those subsymbolic
quantities.

3.2 Reactive Layer of the Controller

SAMUEL was used to implement the reactive layer of
the controller.  SAMUEL is a machine learning system
that uses genetic algorithms (GAs), reinforcement



learning, and Lamarckian learning to solve sequential
decision problems.  SAMUEL is designed for handling
problems in which feedback is delayed (payoff occurs
only at the end of an episode that spans many decision
steps).  This learning system has been previously used
to learn behaviors such as local navigation and
collision avoidance for an autonomous underwater
vehicle [18], shepherding [19], and tracking and
herding for mobile robots.  The original system
implementation is described in detail in [13].

SAMUEL implements behaviors as a collection of
stimulus-response rules.  Each stimulus-response rule
consists of conditions that match against the current
sensors of the autonomous vehicle, and an action that
defines action to be performed by it.  An example of a
rule might be:

     RULE 4

    IF   range2 > 25

          AND  range5 > 0

          AND  bearing = 0

      THEN SET turn = 0

This rule should be interpreted as follows:  if the
MAV’s range sensor 2 is returning a value greater than
25 units, the range sensor 5 is sensing anything, and the
MAV is going towards the goal, then the MAV should
go straight.  Each rule has an associated strength with it
as well as a number of other statistics.  During each
decision cycle, all rules that match the current state are
identified.  Conflicts are resolved in favor of the rules
with higher strength.  Rule strength is updated based on
the reward received after each training episode.

4. Experimental Details

In this study, the hybrid architecture (Section 3) was
used to develop a system to control a team of simulated
micro air vehicles whose task was to perform
reconnaissance and surveillance.  Each vehicle was
able to detect obstacles, including other MAVs, and
certain ground features below the vehicle within a
defined range.  As a group, the MAVs needed to
maximize the information gain, concentrating on areas
of more importance, and minimizing duplication of
effort. In previous work, we successfully used GAs to
evolve MAV control behaviors that could accomplish
this task [22], [9].

4.1 Simulation

The Micro Air Vehicle Simulator (MAVSIM) includes
a simple 2D model of the MAV’s motion, sensors, and
the environment.  The sensors modeled for this study
include eight range sensors (one for each compass
direction), each of which outputs a floating-point

values representing distance to the nearest obstacle or
fellow MAV in that direction, and a “vision” sensor,
which provides the information (interest level, size,
mobility, etc.) about the ground features beneath the
vehicle within its sensing range. The MAV’s
environment (Figure 1) consists of static as well as
dynamic regions of varied military interest which
model real world features such as roads, buildings,
ground vehicles, etc., as well as static obstacles.  The
interest regions are only visible to the controller if they
have been sensed by a MAV’s vision sensor (i.e. if a
MAV has flown over it).  MAVs are destroyed either
when they leave the flight zone (i.e., fly off the screen)
or when they collide with fellow MAVs or obstacles.

The goal of the task was to maximize the score, which
was determined as follows. An individual MAV’s
instantaneous value was equal to the sensed area
weighted by the interest of the visible regions within
the sensor. If the sensor only partially covered an area
on interest, it would obtain a lower value than if it sat
completely over the area of interest.  The average
score, the one to be maximized, was the total value of
all MAVs averaged over time.  Note that an area of
interest could not be accumulated by more than one
MAV in the same instant of time, i.e. only one MAV
would receive credit if two or more sensors overlapped
on some portion of an area of interest.

4.2 Controller

In this system, SAMUEL controlled the behavior of
individual MAVs, while the cognitive model was
responsible for the team behavior.

Figure 1:  Screenshot of MAVSIM interface
showing the plan view of the environment.   Regions
of interest (rectangles of various shades of gray or
red), obstacles (black obstacles) and MAVs (circles)
are shown.



The cognitive model implemented in ACT-R was
based on the data collected during human-subject
experiments performed at NRL and described in
greater detail in [21].  In those experiments, the human
operators would control the MAVs by directing them
to goal locations using a point-and-click interface to
the simulator.  In this study, ACT-R, just like a human
operator, was responsible for providing 2D goals to
individual MAVs based on the current perception of
the world.  ACT-R’s perception of the environment
was closely matched to the perception of the human
operator.  ACT-R could “see” the position and state of
all MAVs, and the position and value of discovered
regions of interest.  This perceptual information was
represented as ACT-R chunks, just as ACT-R/PM
(perceptual-motor) does [10].  The top-level goal of the
model was to perform the task, which required both
exploration of the area as well as surveillance of the
discovered regions.

The model begins by sending the MAVs to explore the
unexplored regions of the environment.  When a region
of interest is discovered, the model delegates MAVs to
determine the boundaries of the region.  If the
discovered regions are of high enough interest (based
on the amount of explored territory and time left), the
model positions MAVs on them. Once the MAV is
positioned on the region of interest, it will be moved
only if there exists an unoccupied region with higher
interest value.

In this study, SAMUEL was used to evolve stimulus-
response rules to perform the collision-free navigation
behavior for the simulated MAVs.  Each MAV used
the same behavior evolved by SAMUEL in
conjunction with the goals provided by ACT-R to
safely navigate to a specified location.  The current
MAV sensor information was mapped to the conditions
of the stimulus-response rules.  The activated rule
specified the action of the vehicle.  SAMUEL’s
conditions included range0 - range7 representing the
eight MAV’s range sensor readings (values between 0
and 50 units in 5-unit increments), and range (values
between 0 to 1200 in 10-unit increments) and bearing
(values between 0 and 345 degrees in 45-degree
increments) to the goal. The turn_rate action, which
specified the MAV’s turning angle per decision cycle
(values between –180 to 180 degrees in 45-degree
increments), was the only allowed action.

In summary, ACT-R performed the high-level thinking
and reasoning while SAMUEL controlled the low-level
mobility.  ACT-R controlled exploration of the
environment (reconnaissance) and the allocation of
MAVs over the regions of interest (surveillance).  In
contrast, SAMUEL controlled the local navigation and
collision avoidance of individual MAVs.

5. Results

In this section, the performance of the hybrid
architecture is compared to the performance of human
operator and SAMUEL controller performing the same
task are discussed. The SAMUEL learning results are
presented first for completeness.

5.1 Reactive Behavior Learning Results

In order to allow us to focus on the important aspects
of the collision-free navigation behavior, the
environment in which the behavior was evolved
differed from the environment used for the task of
surveillance and reconnaissance.  The learning
environment contained no interest regions, but it
contained significantly more obstacles.  Also, to speed
up and simplify the implementation, there was only
one MAV present in the environment during the
episode.  Others were simulated as small static
obstacles.

During each simulation run, the MAV was given a
single goal location, which was at least half of the
width of the environment away.  The positions of the
obstacles and the goal as well as the initial position of
the MAV were generated randomly for each episode.
Each learning evaluation consisted of a maximum of
250 decision cycles at the end of which the behavior
was evaluated.  The fitness function used in this study
was defined as in Figure 2.

The learning experiment was allowed to run for 100
generations with a population of 100 rulebases.  For
each individual evaluation, 40 runs of the simulator
were performed in order to provide the learning system
with statistics about rulebase’s performance for
Lamarckian learning, rule strength updates, as well as
the genetic algorithm.  The system was initialized with
three heterogeneous sets of rules, which implemented
behaviors including random walk, simple obstacle
avoidance, and local navigation.

Every generation, the best rule set from the current
population (based on the fitness function) was
evaluated 100 times in randomly generated
environments.  The values of these evaluations are
plotted in Figure 3.  As seen in this figure, the fitness
of the best behavior was at approximately 0.61, which

Figure 2:  Task fitness function.



shows a considerable improvement over the initial
behavior (0.229).

5.2 Controller Performance Results

The task performance metrics used to evaluate the
controller include the MAV survival rate defined as the
number of MAVs controllable at the end of a trial and
the total score calculated as an average MAV group
score over the length of the trial (Section 4.1).

For this study, the performance of the hybrid controller
was compared against the human controller [21] and
SAMUEL controller performance [9] of the task across
different MAV group sizes.  There were two group
sizes considered.  The smaller MAV group consisted of
six agents while the larger MAV group consisted of
sixteen agents.

As the results show (Figures 4 and 5), the hybrid
controller obtained an average score of 7367.67 with
the larger MAV team and 3626.9 with the smaller
team.  The average MAV survival rates for this

controller were 14.8 MAVs for the larger team and
5.36 for the smaller team.  It can be seen that the
hybrid controller obtained a better score than the
SAMUEL controller independent of the group size,
even though the SAMUEL controller maintained
slightly higher survival rates for smaller MAV group
than the hybrid.  The hybrid controller’s score as well
as the survival rates were comparable to human
controller’s performance independent of the group size.
Once the quality of the evolved collision-free
navigation behavior is improved, the hybrid controller
should outperform the human controller.

6. Conclusions and Future Work

This paper presented hybrid cognitive-reactive control
architecture for autonomous vehicles.  The deliberative
module of traditional robotics architecture was
augmented by a cognitive model of the task.  We
believe our architecture will allow for more intelligent,
more capable, and robust autonomous agents.  Our
architecture should also allow for easier integration of
the agents into mixed-initiative human-agent teams.

A detailed description of the study was given in which
the hybrid architecture was used to implement a
controller for a distributed team of micro air vehicles.
Even though the performance of the hybrid controller
was shown to be only comparable with the
performance of the human controller, it does seem to
capture some of the human's behavior and
performance.  This comparability suggests that our
hybrid model is adequately modeling the humans' high-
level cognitive functions, as well as the low level
reactive aspects.

Figure 4:  The total score.  The graph shows the
performance as measured by the total score
across different controllers (from the left: Human,
SAMUEL, and Hybrid) and different MAV group
sizes (from the left: 6 and 16 MAVs).  The error
bars show standard error of means.

Figure 5:  The MAV survival rate.  The graph
shows the performance as measured by the
number of MAVs surviving at the end of the trial
across different controllers (from the left: Human,
SAMUEL, and Hybrid Architecture) and different
MAV group sizes (from the left: 6 and 16 MAVs).
The error bars show standard error of means.

Figure 3:  Average payoff (over 100 trials) of the
best individuals throughout first 50 generations
tested in learning environment.
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The immediate research will focus on increasing the
quality of the evolved behavior for collision-free
navigation for the MAVs in order to improve the
performance of the hybrid controller as compared to a
human operator.  An attempt will also be made to
examine how much autonomy is appropriate for a
given agent within a team.  We will explore autonomy
by examining collision avoidance, local navigation, full
route planning, situation awareness, and complete
mission planning.  Our hybrid architecture will allow
us to explore issues of reactivity and cognitive
complexities in a straightforward manner.
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